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Abstract

Memory is usually associated with higher organigatber than bacteria. However, evidence is mogntirat many
regulatory networks within bacteria are capableahplex dynamics and multi-stable behaviors thaeHzeen linked to
memory in other systems. Moreover, it is recognitted bacteria that have experienced differentrenmental histories
may respond differently to current conditions. Thémemory” effects may be more than incidental he tegulatory
mechanisms controlling acclimation or to the statithe metabolic stores. Rather, they may belated by the cell and
confer fitness to the organism in the evolutiongayne it participates in. Here, we propose thabhisdependent behavior
is a potentially important manifestation of memowgrth classifying and quantifying. To this ende wlevelop an
information-theory based conceptual framework feasuring both the persistence of memory in micrainesthe amount
of information about the past encoded in historgedelent dynamics. This method produces a phendotgoal measure
of cellular memory withoutegard to the specific cellular mechanisms encodtingNe then apply this framework to a
strain ofBacillus subtilisengineered to report on commitment to sporulatioth degradative enzyme (AprE) synthesis and
estimate the capacity of these systems and groyvtardics to ‘remember’ 10 distinct cell historiesoptto application of a
common stressor. The analysis suggestsBhatibtilisremembers, both in short and long term, aspecits atll history,
and that this memory is distributed differently argdhe observables. While this study does not exarfie mechanistic
bases for memory, it presents a framework for dfyamgj memory in cellular behaviors and is thustarting point for
studying new questions about cellular regulatioth @volutionary strategy.
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Introduction

Your average bacterium is unlikely to recit¢éo 15 places or compose a symphony. Yet evidence is mounting
that these ‘simple’ cells contain complex control circuitry capable rérgéing multi-stable behaviors and other
complex dynamics that have been conceptually linked to memory in g8tems. And though few would call
this phenomenon memory in the ‘human’ sense, it has long been known thatabaetks that have
experienced different environmental histories may respond differ® current conditions [1-3]. Though some

of these history-dependent behavioral differences may be physiedessary consequences of the prior
history, and thus some might argue insignificant, other behawdifatences may be controllable and therefore
selectable and even fitness enhancing manifestations of memory.

In this paper we take the potentially controversial view thstory-dependent behavior, whether short or long
term, controlled or incidental, reflects a form of memory [4-Bpcause bacterial dynamics at every level of
resolution operate within the limitations and potentials of nealinphysical and biochemical dynamical
systems, they must exhibit at least very short-term gahsiemory, and potentially longer term memory. The
type of memory (and its significance) depends on which featureslidiistory are ‘remembered’, and at what
resolution; whether or not the system eventually ‘forgesspést, and if so, how long this forgetting takes; the
mechanisms in the cell responsible for memory storage, encoding, and kedrievahether or not this memory
provides a fitness advantage in a natural environment. Inareystems, environmental memory has been
noted to be inherent in everything from the selective historyustion, epigenetic inheritance via chromatin
modification in neurons and DNA methylation in chemotaxing bactgf], genetic and epigenetic phase
variation mechanisms controlling surface features of pathogeniaibd8®], cellular proliferation and survival

in the immune system, and in switch-like feedback systenmeginatory networks spanning signal transduction,
metabolism and gene expression [10-21]. There is also a growingobagyrk focusing on synthetically
designing and constructing network motifs and systems that aableapf showing some types of dynamic
memory [22,23]. These and many other studies in synthetic and ratsit@ins suggest that even the simplest
first-order chemical reactions have at least transient anenof initial conditions, and more complex
mechanisms involving history-dependent changes in the concentratiates, and localization of proteins and
other regulatory network elements can encode a wide range of ifgnmation and store it for amounts of time
ranging from minutes to days or longer [4,16,24,25]. The state dgmamhsuch systems contain the memory
of past controlling inputs, and even of past environmental conditions if one isrfarét more broadly [5,26].

In metazoans, the ability of somatic cells to remember fatss is key to development and thus to organismal
fitness. The same can be said for other types of metazoalikeetlsose found in the immune system that use a
memory of past states to modify future behavior. In principleaest, memory, whether short- or long-term, can
feasibly confer an evolutionary advantage in microbes as Well instance, Hoffegt. al. suggest that k. coli

a form of ‘memory’ of past phosphate limitation leads to éefasponse to successive periods of phosphate
limitation, and that this faster response may be survival nantg [5]. It has also been suggested that
pathogenic bacteria use cross-talk encoded memory to balance theddemfiammune avoidance with a
sequential, compartment to compartment infection lifecycle [8]6fe abstractly, the dynamic implementation
of cellular behaviors can be viewed as a selected, ‘winnargat(least stable) strategy in an evolutionary game
[12,27]. In game theory, information creates advantage [28-30], &omination about the past as well as the
present creates even greater advantage. Thus if baatelimlare able to store information about past
experience in some type of memory, and use this memory to modiéatebehavior, this opens up the
possibility of playing game strategies with memory, a provabperior family of strategies compared to those
without memory [31-35]. Even if the memory capacity of the esysis short term, but on the order of
environmental fluctuations, it could conceivably impact fitreass therefore play a role in an evolved adaptive
behaviour [28].

Given the potential ubiquity and significance of bacterr@mory, we propose that quantifying history

dependent behavior in microbes could be an important piece of tlzke mfzbacterial regulation, survival
strategy, and evolution. To this end, we developed an informidigmmy based conceptual framework for
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thinking about and measuring both the persistence of memory in nécaodethe amount of information about
the past encoded in these dynamics. This method produces a phenomenolegstale of cellular memory
without regard to the specific cellular mechanisms encoding it. thiée applied this framework to the
bacteriumB. subtilis B. subtilispresents an excellent model organism for this study becdilite exquisite
sensitivity to environmental conditions, its known mechanisms ofliigy and other hysteretic switch-like
regulatory stress response mechanisms and architectures, atel/etepmental decision to sporulate that
strongly resembles eukaryotic memory-associated procestamiting developmental cell fate ([10,36-40],
Fig. 1). Also, certain aspects &. subtilis behavior, such as spore coat composition, have already been
associated with environmental memory [41-43], and though much sugjgsisteere should be memory, how
these response dynamics depend on past conditions prior to &ppl@iaa stress has not been systematically
examined.

In our experiments, we quantified the ability of thriBe subtilis stress response systems — sporulation,
degradative enzyme synthesis, and growth - to ‘remember’ 10 disglchistories prior to application of a
common stressor. We chose to observe commitment to sporulatioreeider fusion to £o,2 because the
sporulation decision is bistable, and bistability is associatddmemory [9,11,16,44]. We added the reporter
for degradative enzyme synthesis (measured by a fluorescemterefused to the AprE promoter) because
though it shares many common controllers with sporulation, its gsipre pattern is quite different and not
believed to be bistable or probabilistic. We wondered whether atyryidependence in sporulation control
would be mirrored in AprE control. Finally, we chose to observe ¢r¢mg measured by Qfd because it is
perhaps the most accessible measure of cellular health meskfiénd is an integrator of many other aspects of
cell function, thus it may show interesting differences depenalingell history. One can imagine that there
might be a strong fitness incentive toward memorg.isubtilis If cells could use a memory of past conditions
to ‘predict’ future conditions, and delay sporulation, an expengieeess, if the environment is likely to
improve or accelerate sporulation if the starvation period éylito be long, they might improve their odds for
long-term survival.

Results

Information Theoretic Memory Framework

‘Adaptive’ memory experiment

A complete quantification of biologically relevant memory woulgolve first perturbing the cell with all
possible sequences of complex environmental inputs it might experience indlire e#ch of its growth modes,
then measuring all cellular responses to these perturbatiosiinally, quantifying the degree and distribution
of history-dependence in these responses.

Here we assume a simple approximation of this scenario, iobhwdach sample of a biological system is
subjected to one of many conditions prior to time t0, and then obseraetbmmon condition after tO (see Fig.
2 and Definition (1) in Appendix S1 in Supplementary Information). \Mé tbis an ‘adaptive’ memory
experiment because it roughly simulates a temporal shift in theoeament requiring adaptation or acclimation,
and to differentiate it from the more classical memory exgnts in physics, engineering and cell biology
designed to identify hysteretic loops [45-47]. While we do wmeniify such loops here, multistability is
suggested by the appearance of long term memory in our experitames complex environmental history
trajectories could feasibly unravel more memory effects.



We are interested in whether past conditions can be inferred fronvati@es of behavior in current conditions.
The assumption here is that history-dependent behavior is a matidestf memory, and that the better the
possible inference about prior conditions from current measureméme more memory there is within the
system.

Adapting communication metrics to memory

To quantify this intuitive concept of history-dependence as mgma use concepts from information theory
[48] in the tradition of Landauer’s use of informational entrapestimate human memory capacity [49], and
the extensive body of work characterizing memory in individual neurons [50-53].

By interpreting the random variab¥ as behavior in current conditions, and the random varidbbes past
cellular history prior to time t0, the mutual informatidfM;Y)=H(M)—-H(M |Y) of M relative toY

provides a measure of memory in informational entropy bits &&3eHig. 3, and Definition (2) in Appendix S1
for details, including the definition of informational entroply. Roughly speaking, from this perspective
I(M;Y) captures how much uncertainty about past conditions can be reduadtdayations of behavior in
current conditions.Worded differently,(M;Y) captures how much information about past conditions can be
inferred from observations of behavior in current conditioifie better the possible inference about prior
conditions (and thus the higher the bit count of I(M;Y)), the more memory thveitbiisthe system.

Short term vs. long term memory

Memory, or history-dependent behavior, can manifest across muitimescales. Short term, or transient,

memory is stored by the system for some time, and then ‘forgdsem Fig. 4a,d). Systems may also have
either ‘effective’ long term memory if the transient dynesnare long compared to environmental fluctuations,
or ‘true’ asymptotic memory if the stationary state of sggtem depends on initial conditions, as occurs in
nonlinear systems with multiple attractors (see Figs. 4b,@and-or an example of the latter, the state of a
bistable switch encodes an asymptotic memory of the last switching event.

Because in many systems the significance, mechanistic originfuaction of memory likely depends on how
long it lasts, and in particular whether it can be classifiexthag-term or long-term, we distinguish between the
two types of memory and quantify them separately. From an infiormaerspective, we say that an external
observer of an adaptive memory experiment witpriori knowledge of the probability distribution over cell
histories detects short-term memory in this system if obseraeasurements of some fraction of the short-term
behaviour of the system after time t0 leads to a reduction ertanay about the history of the system prior to
time t0. In this case, we say that the cells exhiQi(M;Y; tyand = I(M;Y(t = t0:t0+tyang) bits of short term
memory in the observabley over the period from t0 to tO+trans, wheggntis a time before the signal
approaches its steady state (Definition (3) in Appendix SRewise, long-term memory is detected if
observing measurements of the system behavior near an appaaelyt tate after time tO leads to a reduction
in uncertainty about the history of the system. Here we sagelleexhibit L,((M;Y) = I(M;Y(t=t0H,sym))

bits oflong term memory in the observable respongaluring the experiment, wherg,is the time it takes for
the signal to settle (Definition (4) in Appendix S1).

Memory quantification normalized

The above metrics for short term and long term memory augi®sneasures, in that they give a bit count for
an answer. Though these absolute numbers can be useful, it isefldd@a measure memory in relative terms,
compared to the total amount of memory thatild be observed in a perfectly retentive system given the
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limitations of the experiments. To address this issue, \firedghort-term memory fidelity to be RandM; Y;
tirang = I(M;Y(t = t0:t0H;ang))/H(M) andlong-term memory fidelity to be Bso(M;Y)= I(M;Y(t = tO+ tasym
:0))/H(M), where H(M) is the entropy over all the past conditions wexe applied in the experiment. These
normalized mutual information metrics, measures between 0 anch& &fttion of uncertainty about the past
conditions tested that is reduced by knowledge of future cetiedponse, have also been called the coefficients
of constraint [54] (see Definition (5) in Appendix S1).

Quantifying memory in higher dimensions

In addition to analyzing each observable individually, we are stenlein calculating the short and long term
memory exhibited by the combined behavior of multiple observablesioBo, the above definitions are easily

extended to the case of multiple observables by letting Y b@ca)r\/V:(Yl,..,Yn) and calculating

lasyn{M; (Y1,..,Y5) and  landM;(Y1,...Y0); trand a@nd the memory fidelity of each. This combined-memory
estimation is interesting because it allows one to addressugsgion of whether combining information from
multiple read-outs leads to extra memory beyond what is presanty of the individual read-outs, and if so,
how much. This issue is related to the size of the memory, ardinlemsion it occupies within a cell's state
space.

An inequality governing the informational entropy of a vector p#irvariables (X,Y) is as follows:
maxM (X),H(Y)) <H(X,Y)<H(X)+H(Y) [54]. Thus, we know that the memory exhibited by any pair
of observables must be greater or equal to the bit count ofdseratentive pathway of the pair, and less than
or equal to the sum of the bit counts of the two pathways. Ilfptbways are controlled independently, their
combined behavior could produce the upper limit on memory in the higinensional space, whereas if the
pathways are controlled by a common signal or if one pathway therally controls the other, the lower limit
might be realized. To quantify this concept, we defireeory orthogonality between two pathway reados
and Y2 to be: Mem,»(M;(Y1,Y2)) = (I(M;(Y1,Y2))-max(I(M;Y1),I(M;Y2)))/min(I(M;Y1),I(M;Y2)whereM is

cell history and is mutual information. Mem,y, equals 1 if the two variables combined as a vector yield the
upper bound of memory, and O if the two variables in combination Yieltbtver bound (see Definition (6) in
Appendix S1).

Implementation

For the calculations above, listed more formally in Appendix rEBupplemental Information, we need to
estimate probability distributions over the past cell histhieing tested and the responses of the cells to each
history. For past conditions/histories, we enforce a uniform pililyaof observation of each condition by
running each experiment (condition i => response i) a fixed numbemebti For responses, we cluster
trajectories from the different conditions and the probabilitg tésponse is simply the histogram of trajectories
over clusters. The probability of prior environment given clustembership is enumerated in a similar way.
Details of the entire analysis algorithm can be found in Materialdveathods.

Caveats

The above information-based metrics and simple associatbaiarelgorithm (see Materials and Methods) are
useful in that they transform the ‘lay’ questions — “Do céllamember’ past experiences and use these
memories to modify future stress response dynamics?” and,"i§ $his ‘memory’ short term or long term, and
how much is there?” — into well-defined queries about informatad uncertainty yielding quantitative
estimates of microbial memory in informational entrdjitg.



However, any attempt to quantify or qualify memory is fundamignitalited by the possibility of unobservable
states (see Fig. 4c), uncontrolled and unobservable inputs, poor choice of inputatimms and sequences, and
measurement errors and distortions. Here we assume mostlimitelions, discussed in more detail in
Supplementary Information (Section S1), are inherent in thea&tstin of memory processes and most likely to
result in information loss and thusmderestimatesf the ability of the system to ‘remember’ the cell drits
tested by the experimental compendium. Therefore we interpretifopadions of memory within ouB.
subtiliscompendium as lower bound estimates.

Experiment and Overview of Analysis

Memory experiment on B. subtilis: To test for history dependent behavior — ‘memory’ -Bin
subtilis, we engineered a fluorescently labeled straiBadillus subtilisto report on commitment to sporulation
and degradative enzyme synthesis: the KEE strapolfE-gfp PaprE-dsred cmpsee Materials and Methods
for details on strain construction). ThpollE promoter (BpollE), our sporulation reporter, controls expression
of spollE a gene encoding a serine phosphatase specifically exprngisse commitment to sporulation and
therefore considered a good sporulation commitment signal [55,56].apHe promoter (RprE), our
degradative enzyme synthesis reporter, controls expressitime afxtracellular protease subtilisin naturally
produced byB. subtiliscells at the end of exponential growth [57].

With the KEE reporter strain, we used our framework to estiniatinformational entropy bits, the capacity of
these stress response pathways and of the cell growth dyrtarmesiember’ 10 distinct cell histories prior to
application of a common stressor. Specifically, we firetagthree replicate cultures in one of two media, Luria
Broth medium (LB) or growth medium (GM) [58], to one of five diffiet densities (all still in exponential
growth, ranging from ORE), = [0.1:1], see Table 1, where @pis the optical density of the culture at 600nM),
for a total of ten cell histories. Thus in the first stagéhefexperiment, a clonal population of cells was divided
into 30 groups, each of which experienced one of the 10 cell histosgsting of growth in one of two media
to one of five cell densities over a fixed period of time (see Mgeaaial Methods for details).

We chose to combine different media with growth to different ilessas our set of cell histories because
growth media can impact cell state, as can growth of cultardsferent densities over a fixed period of time.
Cells deplete nutrients and respond to the environment and its agnaith changes in metabolic fluxes, post-
translational modifications, gene expression, quorum signalingsgnthesis of storage compounds. GM
medium (also called CH medium) is a rich medium with caseinohyghite as the sole carbon source [58]. LB
medium is a much richer and more complex medium than GM and thesefstains more rapid growth. We
assumed that any resulting history-dependent differences inatellagttime tO might lead to different history-
dependent behaviors in the common medium after t0.

After experiencing one of the 10 different cell historied|scevere then pelleted and resuspended at an
intermediate density (QJa=0.5) in a common stress medium, in this case, sporulation saltatista medium
(SM) [58]. The resuspension time is denoted t0. Thus, regardless okpageaces, all cells observed after t0
were subjected to starvation conditions starting at tO in a fixedtgefmsed-size population.

Our three observablésafter tO consisted of two fluorescent reporters, one foufgdan initiation and another

for degradative enzyme synthesis (strain KEBp@PE-gfp PaprE-dsred cm)), and optical density of the
culture as a proxy for cell growth (Qfg, measured at the bulk population level every 15 minutes for 24 hours
starting at time tO (see Fig. 4 for time series, and Nédseand Methods for details on strain construction and
experiments). Thus, with 30 cultures — three for each of the 1@istdlies — and three observables per culture
measured every 15 minutes for 24 hours in the common stress medidimgsat tO, the memory data
compendium for this set of experiments consists of 30x3x96=8,640 measuremanged in a 90 by 96
matrix.



Data analysis overview: The resulting memory data compendium was then analyzed for simoit-
long-term memory in each output signal individually and in alkjiids combinations of the three signals by
applying the memory quantification algorithm described in detdaterials and Methods and illustrated in the
flow chart in Supplementary Information Section S2.

To briefly summarize, in order to estimate how much short-tarthlong-term memory was manifested in the

behavior of the reporters, we sought to calculate the mutual infiormaetween the behavior of the cells after

t0 and the history of the cells before t0. This calculatgmuired that we estimate the joint probability density
between cellular behavior after tO and cell history prior toGen constraints on the amount of data and other
considerations described in detail in Section S3 of Supplemdntarynation, we took a clustering approach to

this problem. That is, we first clustered the response of the patlaporter as a way of dividing the trajectories

into groups with common, distinct behaviors. The resulting assignofezgich trajectory to a cluster was then

used to calculate the frequency of co-occurrence of each bedlasless and each possible cell history. From
this histogram we estimated the requisite joint probabiliggrithution, which was then used to calculate the
mutual information between cell history and the behavior obtiservable, and thus arrive at an estimate for
memory.

We performed this procedure on the 30 trajectories (3 replitmtesch of the 10 cell histories tested) of each
of the three observables, using both the short term (first 11 houmsasunements, during which the signal was
still dynamically varying - see Materials and Methodsrfare details on our choice of analysis intervals) and
long-term response (last three hours of measurements, from 21hougs} by which time the signals have
remained flat for several hours) in order to estimate short-tand long-term memories manifested in each
individual signal. To calculate the short-term and long-teremory in the combined activities of multiple
signals, we took the same approach, with the one difference beingeltdastering step captured the combined
behavior of multiple readouts (Step 3 in the algorithm in Ngeand Methods). All bit counts were then
normalized to calculate memory fidelities and orthogonalitiedeéined in Appendix S1, in order to estimate in
relative terms how much of the total possible memory eachrmysemembers’, and how much ‘extra’ memory
is embedded in the higher-dimensional spaces formed by multiple pathways.

Since the 30 populations were subjected to 10 different (witham)grast condition$/=(Medium1, Densityl
in equal proportions, the informational entropy of the cellonysspace M is H{l) = —log, (1/10) = 3.3219

bits. Thus,without prior knowledge there are 3.3219 bits of information abellithistory at most that can be
recovered from observation of these three outputs, either individuatlycombination and on any time scale.

Experimental Results

A qualitative overview of history-dependence

TheB. subtilisstress responses measured by the three observables (Figppea) neither memoryless nor in
possession of a perfect memory of the cell histories tested. They do nottagpearemoryless because not all
signals from a given observable follow a common trajectory (witbise bounds) irrespective of past history of
the cells. Nor does the memory of any observable appear to be perfect, because thmagh thedistinct cell
histories prior to time t0, there appear to be fewer than ténalisynamics per observable in response to the
starvation stressor administered at time t0. By éyetappear to be more distinct behaviors in the short term
than in the long term. Also, different cell histories group ttogiefor different observables. This means that we
expect a higher bit count estimate of short term memory thwag term memory, and different amounts of
memory and of different aspects of cell history in the three pathwayabses.



All observables exhibit short-term memory of cell h istory, with sporulation
exhibiting the most and growth dynamics the least

The transient behavior (first 11 hours) of the SpollE (sporulatepdrter clusters into five distinct classes of
behavior (different onset times and sigmoidal vs. more pldsatpression), whereas the transient behavior of
the AprE (degradative enzyme synthesis) reporter clustershiree classes (different onset times and different
expression levels) and the growth reporter into just two dgssene vs. almost no growth) (see left panels of
Fig. 6a,b,c). The mutual information between the resulting ciogterectors and the cell history vector
captures how well the different behavioral classes of edservable correspond to different cell histories.
Performing this calculation, we estimatgndspo)= 1.96 bitsof short-term memory in the sporulation reporter;
lrans(apre)= 1.4855bits of short-term memory in the degradative enzyme synthesis reporteg,a@ag)¥ 1 bit of
short-term memory in the growth dynamics reportersdDrhus, all three observables exhibit short-term
memory of the cell histories tested, with the sporulation tepaxhibiting the most memory and growth
dynamics the least.

Dividing these absolute bit counts by the entropy of the celibiyi space, we estimate the short-term memory
fidelities of sporulation initiation, degradative enzyme syntheaind growth dynamics to be.Rspor
lranssphH(M)=1.96/3.3219=0.59, Rns(aprer lrans(apref H(M)=1.48/3.3219=0.45, and «Rsop)= liranseofH(M) =
1/3.32:0.3, respectively. This means that if one were to obserd® ahort-term responses of one of the three
reporters after tO but not told which history corresponds tachwinajectory, 59% of the uncertainty about cell
history prior to time t0 could be reduced by observation of thei¢rarsporulation reporter dynamics after time
t0, 45% of this uncertainty about the past could be reduced by atiseref the degradative enzyme synthesis
reporter dynamics after t0, and only 30% of this uncertaiatydcbe reduced by observation of the growth
dynamics after t0. More intuitively, one could say that 59%, 45% and 30% of the ¢stibries tested are
‘remembered’ by the short-term dynamics of the sporulatiogradative enzyme synthesis, and growth
reporters, respectivelpee Fig. 7 and Table S1).

All observables exhibit long-term memory of cell hi story, though at a lower bit
count than short-term memory

Though short term memory can be important—because even short teamaoal differences may have fitness
consequences [59], especially if they are on the order of envirocanflectuations [28,60]—Ilong term memory
is generally the first thing that comes to mind when menwdiscussed [61-64]. One might expect long term
memory inB. subtilisstress responses - sporulation control especially - becaulse ffedback topologies in
their regulatory circuitry and reportedly bistable behaviors [10,36-39].

To estimate the long term memory in each individual pathway stecfinstered the final segment of the 30 time
series of each reporter (from 21 to 24 hours after tO) to dstitm@ number of distinct long-term behaviors for
each of the three pathway reporters (resuls unequal-sized clusters for each reporter, as shown in Fig. 6,
though the cluster sizes and associated cell histories diffess reporters). We then calculated the mutual
information between the clustering results and the cell kistector to arrive at lower bound estimates of
lasym(spo)= 0.8813 bits, lasymeapre) = 0.72 bits and ksymop) = 0.97 bitsof long-term memory in the networks
controlling sporulation initiation, AprE synthesis and growth dynamiespectively. Thus, like a switch, there
appear to be two, stable, long term behaviors for each patlewaster, though the probability of converging to
each is not equal or the same across reporters, as is efigatestinct bit counts of less than 1 (if half the past
histories lead to one attractor and the other half of the lastéed to the other, there would be 1 bit of
asymptotic memory).



Dividing these absolute numbers by the entropy of the cebirisipace, we estimate the long-term memory
fidelities of sporulation initiation, degradative enzyme synghemd growth to be Bmspor lasymespdH(M) =
0.8813/3.3219 = 0.265,.8mpper 0.22, and Rymooy 0.29, respectively. Thus, approximately 25% of the
uncertainty about cell history prior to the onset of stéwmais reduced by knowledge of any one of the three
long-term reporter dynamics in the starvation environment. uffor&rize, all three observables exhibit around
1 bit of long-term memory of the histories tested, though déreifit aspects of cell history as will be shown
below. One bit is a significant amount but much less than the nebitly & memory seen in the most retentive
short-term response.

Different observables remember different aspects of cell history to different
degrees

The above memory estimates are in a sense high-levelydeeeach of the 10 distinct cell histories is treated
identically. By drilling down a level of resolution to the compangarts of the cell histories — initial nutrient
composition of the media and cell density reached in that medihvean also feasibly affect both the
nutritional composition of the medium and cell state while in logsgha we can investigate which aspects of
cell history are remembered by the observables and for how long.

In the short term, all three observables have a perfect mavhevhether they were grown in LB or GM, and
only a partial memory of their density in this medium. Putenformally, if we consider growth medium in
isolation and calculate the mutual information between growth medium ptioredO and transient response of
the three reporters to starvation after time t0, we tssteat history of growth in LB can be distinguished from a
history of growth in GM with 100% memory fidelity (RsspfMediumdY;tyans=11 hrs) =
Prans(apre(Medium1Y;tyans=11 hrs) = RansoofMediumily; tyan=11 hrs) =1, whereMediumlis a random
variable representing growth medium prior to time t0, and ca dakthe values GM or LB). In contrast, the
ability of the pathways to remember the population density reguin@dto tO (and any changes in cell state
these differences in cell density create) is less simiigh a history of growth in GM, the cell density prior to
the onset of starvation at tO is not ‘remembered’ by the shontBe subtilissporulation, degradative enzyme
synthesis, or growth dynamics responses, even transiently (0% yndidelity), as all responses are
indistinguishable within noiseghdDensityl/Mediumdt GM;Y; ty.ns=11hrs)=0). However, when grown in LB,
the cell density prior to t0 is remembered with 80% memalslify by the transient sporulation dynamics and
with 60% memory fidelity by the transient AprE dynamicg.ifspdDensityIMediumELB;Y; tyas=11 hrs)
=0.8; Rans(aprefDensityIMediumZELB;Y; tyans=11 hrs) =0.6).

In the long term, all three observables have only a partimlaneof which medium they were grown in, and to
what density. Like in the transient memory case, past gravetium is remembered better than past cell
density, but unlike in the transient memory case, there i®rieqgdly clean dividing line separating out the long-
term responses to the two growth media histories. For example, givenabioses of the long-term behavior of
the sporulation reporter, a history of growth in LB can be distitgad from a history of growth in GM with
only 39% memory fidelitfl.symspgMedium1Y)/H(Medium3=0.39), whereas cell densities (grouped into five
classes, (D,-1,-2,-3 and -4)) prior to t0 are remembered kgs well, with only 12.1% memory fidelity
(lasymspgDeNsity1Y)/H(Density)=0.121). A similar pattern can be seen in the long-term mesmofithe other
two reporters. Interestingly, though each reporter exhibits twsitpedong-term behaviors, the clusters are
different sizes and the histories that correspond to each behaligtdr are different for different pathways.
As will be shown in the next section, these differences lead to the possibdityincreased memory capacity in
the higher dimensional space defined by the combined activities of rydtgiways.



There is more long-term memory in the combined acti vity of the observables
than is present in any individual observable

Interestingly, analysis of theansient memoryf the pairs of pathway readouts (Spo, AprE), (Sposopand
(AprE, ODsq0)) showsno increase in memory in the higher dimensional spiaae is found in the most retentive
pathway in the dyad (see Figure 7). For example, we estithattransient memory found in the pair (AprE,
ODsqg) to be 1.4855 bits, which is the same bit count found in AprE aldeeggans(M;(APrE, ODg)) =
(1.4855-1.4855)/(1.4855) = 0). Likewise, the three-dimensional readout (pB, B0y shows no more
transient memory than is found in the sporulation pathway (1.96 bits), its resgive member.

However, the same conclusion does not follow for asymptotic memémery pair of pathway readouts
contains more asymptotic memory than either constituent signal, atdplleepathway readout contains more
asymptotic memory (at 1.57 bits) than any of the constituent (sgesFigure 7). This implies that the long
term behavior of our three observables occupies a relativgly dimensional space, with each subsystem
responding differently to aspects of past conditions. For exathplegh the AprE pathway is estimated to have
only 0.7219 bits of asymptotic memory and the growth measurg,@8s only 0.971 bits of asymptotic
memory, the pair (AprE, Ola) has 1.371 bits of asymptotic memoN &My in@sym{M;(APrE, ODgog)) = (1.371-
0.971)/(0.7219)=0.554, or 55.4% of the maximum). Put more concretely, thptatgrbehavior of the AprE
signal alone ‘remembers’ two classes of cell history:fifs¢ a history of growth in rich medium to higher
densities and the second all other histories in the compendium. Whereas airsepfdtie asymptotic behavior
of the growth signal allow distinction between tdifferent classes of cell history; the first growth in rich
medium to all densities greater than the lowest tested (d)the second all other histories in the compendium.
Viewed together as a combined vector in a higher dimensipaale, the asymptotes of the pair (AprE 6D
permit distinction between three classes of cell history: growth in riclumeto higher cell densities, growth in
rich medium to low (but not lowest) and intermediate cell dessiind, finally, growth in rich medium to the
lowest density or growth in poorer medium to any density. Addingsfiulation signal increases the
information storage yet again, by adding another discernads,deading to a total long-term combinatorial
storage of 1.57 bits. Thus, because the different cellular systeBissubtilisremember different aspects of
prior history, the combined activity of multiple pathwaysalsle to combinatorially store more information
about the past than can any individual pathway. However, thlea®mptotic memory is still somewhat less
than the total transient memory (1.57 vs. 1.96 bits). (For a etenptcounting of cell history memory over all
signal combinations, and for the mutual information between all p&issgnals, including the transient and
asymptotic responses of each signal, see Figure 7 and Table S1.)

Discussion

Though evidence that bacterial cells are able to rememberhikries and use these memories to alter their
behavior in a fithess enhancing manner would not raise expectttairizacteria could recite or write music,

it would enrich the motifs-modules-games view of bacterial reguiafi2] by addinggame strategiewith
memoryto the repertoire of microbes. This exploratory paper does oadprevidence thd. subtilis or any
other microbe, is intelligent or is playing an evolved, figaeshancing memory strategy. Rather, in this work
we propose that the familiar phenomenon of history-dependent behamaraobes reflects a form of memory
worth studying systematically and quantifying, and that doinget® the foundation for understanding both the
mechanisms and function of memory in cell behavior and fitness. thi$ end we formulated a conceptual
information-theory based framework for measuring microbial mgntbereby introducing tools that begin to
observe and quantify the relationship between past cell hiztmyuture cell behavior from a new angle. This
method produces a phenomenological measure of cellular memory wittgard to the specific cellular
mechanisms encoding it.
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We then applied these tools to a simple set of medium-ekgeriments orB. subtilis in the process
demonstrating thaB. subtilisdoes ‘remember’both in the short and long term, aspects of its cell history, and
that this memory is distributed differently among the okmaas. More short term than long term memory was
evident, with short-term sporulation dynamics exhibiting the mostang and long-term degradative enzyme
AprE synthesis dynamics the least. As expected, some but noft theé history-dependence between the
sporulation and AprE reporters is shared (AprE has 75%eo$ltbrt-term and 80% of the long-term memory
estimated for sporulation). We also illustrated how to quamiémory in multiple combined variables, in the
process showing that because the different cellular systeBssubtilisremember different aspects of prior
history to different degrees, the combined activity of multiplédwpays is able to combinatorially store more
information about the past than can any individual pathway. Of the two componeritistas varied in our
compendium — past growth medium and the cell density reacheild imeéldium, which can alter cell state even
in log phase — growth medium appeared to be better remembeBdsbitilis with past density remembered
best when originally grown in the medium richest with nutrienBs, IAdmittedly we do not yet know whether
the memory we have observed is fithess enhancing and evolvedstoingidental, or what molecular
mechanisms or artifacts are responsible for the observednpaftenemory storage. Rather, these simple
experiments and the surrounding analysis and framework demenstrat could be the beginning of a larger
memory program, and indicate that memory in cellular behaviors may beaaeécfor further exploration.

Ideas for a more complete memory-in-microbes resear  ch program

A more complete program for investigating memory in bacteoaldvencompass at least three lines of inquiry,
essentially the ‘what’, ‘how’, and ‘why’ of bacterial memoryrhe first line of inquiry (what), for which this
study is an example, is the quantification of environmental memaaymicrobe. This study could be extended
by resolving the population-averaged behavior analyzed in this paper ins@figneasurements and memory
classification and gquantification. Given that sporulation is thowghbe a stochastically triggered bistable
developmental process [10,36-39], one might expect the population-edenaeasurements (Figure 5.b) to
resolve into bimodal distributions of high and low GFP-expressiitig. @nd since AprE synthesis control is
believed to be more deterministic and analog, one might expectmuremodal distributions.  Preliminary
data from flow cytometry analysis support this expectatiorieadt for some histories and time points (see
Figure S1 in Supplemental Information), but further work is edetd determine for what conditions and
pathways memory at the single-cell level can be cladsifiestochastic, and the form and quantification of this
stochasticity. An exploration of the memory characteristics berotellular players active in these and
interacting networks, and the space of their environmental isgysitvith the goal of estimating the ‘true’
memory capacity of the system, are other possible extensions of tkis wor

A second line of inquiry (how) would build upon the first by elucidating causal basis for any observed
environmental memory. Though many genetic and epigenetic bacteiighing mechanisms have been
elucidated [8,10,16], still unclear is exactly how different typesneironmental and intercellular signals might
be encoded and remembered within cellular circuitry for vargngths of time, a question addressable through
mutant studies and modeling. On the ‘meta’ level one could astherhmemory is stored within single cells,
population distributions, or in the larger state space defined bycdhenvironment interaction through
distributions of nutrients, waste products, enzymes, signaling meseduibfilm generating conditions, and so
on. A third line of inquiry could focus on the ‘why’s’ of environmenta&mory. Is environmental memory, if
it exists, controlled or incidental: evolutionarily advantageousteebus, or neutral? Is there evidence that
memory-modulation of phenotype expression control does not provideeasfindvantage in thesentbut
rather in dutureimplicitly anticipated from past experiences, thus implying aerival model of environmental
dynamics (in analogy to the internal model principle in corf6b])? We suspect that answers to these ‘why’
guestions could be key to whether the others are worth deeply pursuing.
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What do the B. subtilis memory observations in this case study mean?

Though we do not yet know whether the memory we have obsenigtessfenhancing and evolved, or merely
incidental, we can speculate. Looking qualitatively at the thedwavioral observables together, we notice that
when cells are grown to low density in the less rich GM megdlitior to the onset of starvation conditions, they

on average grow very fast after resuspension in starvatiorameadil after a brief lag start turning on their

degradative enzyme synthesis and their probabilistic sporulationimeay, even as the population continues to
grow. Whereas when cells are grown in richer, nutrient fillBdmedium to the same low density prior to the

onset of starvation conditions, they take a quite different approacthis case, cells seem to adopt a wait-and-
see strategy, forgoing growth and delaying sporulation and AprE synttiesiaify hours.

A game strategy with memory?: The most tempting speculation is tBatsubtilisis playing a memory
strategy in an evolutionary game. From a game perspectivesooie take these observations as a sign that
after transitioning from a less rich medium to starvat®nsubtilisuses its memory of past nutrient-limited
growth in the context of an implicit internal model of envir@mtal dynamics to ‘predict’ how long starvation
conditions will last. If the cells expect starvation tetla long time, a rational course of action might be to
create as many spores as possible, as fast as possibéximaiza the spore count that will lie dormant until the
next period of nutritional plenty. On the other hand, if growitla irich environment prior to starvation in the
context of this internal model produces a prediction of a shaddef starvation, the rational action might be
to delaysporulation, thereby decreasing the chances of having cominiteeersibly to an unnecessary, costly
8 hour developmental program during which conditions could improve and theaeld be growing. Viewed

in this way, B. subtiliss cell-history dependent behavior might constitute an evolved pidb@bimemory
strategy in its game of survival. Such a strategy wouichipr diversification strategies without memory [28-
30,35,66,67], and be analogous to adaptive model-based bet hedging ovesifiedivgortfolio in the stock
market [28].

If the above scenario is true, one would expect sporulation iimitiatelay to be a likely feature of the
sporulation regulation strategy &f subtilisto exhibit memory. Within our experimental compendium, the
delay in turning on the sporulation machinery, as estimated @antbent of time it takes for GFP to start being
noticeably expressed from the SpollE promoter by a population (nesda@BFP intensity > 0.035, after which
GFP rapidly increases), ranges from a relatively short 1.55hous much longer nearly 8 or more hours after
the onset of starvation (Figs. 5b and S2 in Supplemental Informatio@alculating the mutual information
between GFP expression delays and cell history, we see that(860s} of the short-term memory in the
sporulation reporter can be recapitulated by reducing thectivags to this single number M( Initiation
Delay/lyandM; Y trans=11hrs) = 1.685/1.96 0.86) This calculation does not prove that the history-dependence
we have observed is an evolved and fithess enhancing memory strategy in budanie suggestive.

...or an artifact of metabolism?: Then again, the explanation could have little to do with evolutjonar
games. It could be that differences in metabolic stores, keegieg apparatus, or metabolic state induced by
the different media and different biomass of the culture simplgesent initial conditions from which entry into
sporulation and other stress responses is more or less easy [1]. Fplegkanme might be more ribosomes after
growth in LB than there are after growth in GM, forcinglceoming from the latter to stop growth and initiate
sporulation sooner. Or it could be that growth in GM, a mediutnvthde not nutrient-limited is lacking the
excess of simple carbon and nitrogen sources and readily available aminoactdmfLB, activates metabolic
pathways that can facilitate growth and spore formation insstcesditions. Then, when transferred to
starvation conditions, cells might be able to use this metalmdichinery (and perhaps some form of
intracellular nutrient storage) to scavenge whatever scargients are to be found in the new medium in order
to grow and turn on their sporulation and degradative enzyme pathwayg inemediately. Whereas with a
history of growth in rich, complex LB medium, cells might ent&rnstion conditions of SM without
enzymatic or other reserves necessary for a near-immedsense to severely limited conditions, and thus
require a delay while the cells construct the necessary metabolicnv@actu acclimate to their environment.

12



These possibilities are not mutually exclusive; history-deperuhdyviors could stem from some combination
of evolved diversification game strategy and artifactulapéive metabolic processes. Experiments comparing
the fitness of wildtype bacteria to mutants with disrupted memmeghanisms coupled to a game theoretic
analysis will be necessary to distinguish among the possbjliind would identify the mechanistic source of
memory behaviors in the process. In any case, we hope that this cahfrgpbework and analytical approach
to quantifying memory in cellular behaviors will be a useful pahdeparture for studying a new set of
guestions about cellular regulation and evolutionary strategy in microbes

Materials and Methods

Strains and culture media.  Bacillus subtilis168trpC (Bacillus Genetic Stock center) was used as the
wild-type strain. Escherichia colistrain DH® was used for all plasmid amplifications and isolations.
Escherichia coliwas grown at 37°C in LB supplemented, when necessary, with dmpai a final
concentration of 10Qg/ml. B. subtiliswas cultured at 37°C in either LB, growth medium (GM) or spdaonrat
medium (SM). GM and SM media are commonly used in the ‘inductiorpa@fulation by resuspension
protocol’ described by Harwood and Cutting [58] and were supplemevited50ug/ml and 20ug/ml L-
tryptophan respectively. Antibiotics were added, with theofailhg final concentrations: chloramphenicol, 5
ug/ml; spectinomycin, 104g/ml.

DNA isolation and manipulation. Total genomic DNA fromB. subtilis 168 was isolated with
DNeasy Blood & Tissue Kit (Qiagen) following manufacturgstetocol for Gram positive bacteria. Plasmid
DNA was extracted fronk. coli with the QIAprep kit (Qiagen). DNA restriction and cloning egrerformed
according to standard procedures [68]. Restriction enzymes and P4|iDhke were obtained from New
England BioLabs and used according to the manufacturer’s instrsicDNA fragments were purified from
agarose gels with the QIAquick gel purification kit (QiagergntDNA polymerase (New England Biolabs)
was used for PCRs.

B. subtilis reporter strain construction. Strains and plasmids are listed in Table S2 in
Supplemental Information. To integrate the fluorescent repgens in theB. subtilisgenome the pLFKEE
integration vector was constructed as followed. The GFPnta@&Pmut2 [69] was excised from pMF19 [70]
by digestion withBamHI/EcoRlenzymes and ligated into pEA18 (a gift from Antje Hofmeistiggested with
the same enzymes, to give pLF22. The plasmid pEADM(spg is a vector [71] allowing integration by
double cross-over at th@myE locus, with a chloramphenicol selection. Té@olIE promoter (Byoig) Was
amplified by PCR from B. subtilis 168 genomic DNA using primers PspollEH2bRI
(atcacggaattcaaatcggtttctctigcagaagccg) and PspollEMhdRIlI (atacaaagcttttatattcgttgcctgtcattatageg), and
digested withEcoRI and Hindll) then ligated 5 ofgfpmut2on pLF22 that had been digested with the same
enzymes to give pLF25 {B,=gfp, cmp. The transcriptional profile of thepollE gene was verified by total
RNA dot blot before and after induction of sporulation to confirneédy and specific expression induction at
the onset of sporulation (see Figure S3).

To obtain the Redsred fusion, thedsredexpressoding sequence was amplified by PCR from pDsRed-
Express (Clontech) using primers DsRedr&¥| (tacggccggcctaaggaggaactacaaatggcgagcagtgaggacaigptcaa
and DsRed-X£coRV (agatatcgatcagatctacaggaacaggtggtggcg). The PCR fragim=ined was digested with
FselandEcoRV A modified version of thaprE promoter (B,e) (developed and tested in [72]) was amplified
by PCR from pSG-TTGACA [72] using primers PaprES@G\¥| (tgaaccggttgtcaaacatgagaattcagcg) and
PaprE-RFsel (caaggccggccaaattcagagtagacttacttaaaagac). TheéngeRCR fragment was digested whlgel
andFsel and ligated witiFselEcoRVédigesteddsredexpressto Agel/EcoRWligested pLF25 in a three-point
ligation to give pLFKEE Rsp0ie0fp, Ppre-dsred, cmp spc Selection of plasmid constructionsEncoli clones
was done by adding ampicillin as described above and correct fusions wkee Wgrsequencing.
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To constructB. subtilis KEE, pLFKEE was transformed intB. subtilis 168 competent cells as previously
described [58] and selected on LB solid medium supplemented wittactgbenicol. Integration clones were
screened for themmyEphenotype on LB + 1% starch solid medium [58]. The inability of the clones obtained to
grow on spectinomycin was checked to eliminate single cross{oasmid integration events. Correct
integration of the fusion at trmyElocus was verified by PCR analysis.

Medium-shift experimental protocol. Before each experiment, cells were streaked from —80°C
glycerol stocks on LB plates with chloramphenicol and growmraghkt. One colony was picked and inoculated
in 5 ml liquid LB medium with chloramphenicol in a series ofitiiin tubes and grown overnight at 37°C. The
culture the closest to QR of 1.0 was used to inoculate 60 ml of LB or GM in 250-mlki$ai® a final Oy, of
0.05 (flask D) after elimination of the culture medium by cé&mation of the cells (6,000 x g, 3 min). The
culture was split in two, and successive dilutions of 1:2 weropned to a total of 5 flasks of 30 ml culture
(flask D and dilution flasks: -1, -2, -3, -4). Cells in all fowasks were grown simultaneously at 37°C, 200 rpm,
until the most concentrated culture grew to anegfDf 1.0 (Flask D). Then, 25 ml of each culture were
harvested by centrifugation (8,000 x g, 5 min) and resuspended imapred SM medium volume calculated
to obtain a final OD of 0.5 (medium density). Three aliquots of ([ #0Bom each flask were transferred to a
sterile Costar 96-well black plate with flat clear bottg@orning). Cells in the plate were grown in a Tecan
Safire microplate spectrophotometer at 37°C medium linedirsdp setting (395 rpm). Culture turbidity (G4

and fluorescence were measured at 15 minutes intervalsttwalaime of 24 hours. GFPmut2 was read at
wavelengths of 481 nm (excitation) and 507 nm (emission), and Dsitedexvas read at 557 nm (excitation)
and 579 nm (emission).

Memory and mutual information analysis. There are a number of ways to translate the memory
quantification definitions in Appendix S1 into an analysis algorithWe took a simple fixed-interval,
clustering-based approach executed as a five-step algorithmlennanted the MATLABO©
(http://www.mathworks.conmy/analysis environment, as follows (see Supplemental Inform&gation S2 for
schematic):

(step O — select time intervals)The first step in analyzing the data is to setent intervals to analyze. We parsed the
time series data (30 trajectories measured ovdiozds for each of three observables) into a ‘steorty’ set taken well
before steady-state is reached (first 11 hours #tethe onset of starvation — though we couldehtaken any endpoint
between 8 and 19 hours and obtained the same fa&dtpanel (b) in Section S3)) and an ‘long-teset. For our
purposes, we take as our ‘proxy’ for long-term,rapiotic behavior the last three hours of our meaments, from 21 to
24 hours after t0, because by then all signals hew&ined flat for several hours. Experiments famlonger periods of
time indicate that these signals remain flat folomg as we have measured them (36 hours, datshoatn). However, we
view this long-term data set as only a proxy foynagtotic behavior because though these signalsirecmastant for at
least 36 hours, cells are forming spores and mghphysiologically changing in other respects dytinis period and
beyond.

(step 1 — cluster data): We used the Matlab script in S2.2 to hierarchjcallisterthe 30 short-term and 30 long-term
trajectories of each observable (10 cell histoxi&sreplicates) and to select ‘optimal’ clusteripartitions for each. The
assumption here is that the behavior of the obbtevée.g., GFP intensity) falls into distinct class for example,
increasing or decreasing. This script a) constractSuclidean distance matrix with the Matlab fumetipdist.m, b)
constructs dendrograms using ward and averagegkinkéth the function dendrogram.m, c) performsailktte analysis on
all tree cuts of both trees from (b) with the Mhtlaunction silhouette.m [73], and d) ‘optimizes’taeaclustering by
selecting the partition that maximizes the meamosiétte, a measure of the compactness and sepasdtibe clusters in
the partition [73]. This step produced six 30x1stdm vectors, one short-term and one long-ternteiugctor for each of
the three observables (i.e., ClustSPO_short, OR@t3ong, ClustAprE_short, ClustAprE_long, ClustOBbor,
ClustOD_short).

(step 2 — estimate memory)Next we estimated the short-term and long-term orgrim bits of each individual observable
with the Matlab program Entropy_Mutuallnfo.m in $2.This program accepts two input vectors, A an@dml calculates
from them individual informational entropies H(AléH(B), the entropy of the pair H(A,B), and thetmal information
between A and B, [(A;B) = H(A)+H(B)-H(A,B). H(X)s defined in Supplementary Information (Appendik),Sand
H(X,Y) is calculated by first calculating the joiptobability distribution over (X,Y) and then calating the entropy H
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over this joint distribution. Thus, memory is esdited to be the mutual information between celldnistnd cell behavior
and calculated by calling Entropy_Mutuallnfo.m witiput vectors A=M=[1112 2 2 ...10 10 10], thel ¢te$tory vector ,
and B equal to one of the six cluster vectors fsiap 1. To calculate memory fidelities, we normedizhese memory
estimates by dividing by H(M)=3.32, the entropytlod cell history space.

(step 3 — estimate memory in higher dimensions}.he third step of the algorithm is to estimate shert and long-term
memory exhibited by the combined activities of paif observables and by the triple of observables.do this, we first
used the script in S2.3 to combine cluster vedror® multiple read-outs. This script takes adnfsut two cluster vectors
Clustl and Clust2 and outputs a combined clustectove Clust3 (e.g., if Clustl=ClustSpo_short; and
Clust2=ClustAprE_short; then the output Clust3 igeator capturing all combined short-term behaviafrSpo and AprE,
for example (Spo,AprE)=(increasing, decreasingj¢r@asing, increasing) or (decreasing, decreasinypxt, by calling
Entropy_Mutuallnfo.m with inputs A=(the cell histovector M), and B=(the combined cluster vectorst3), we calculate
the mutual information between cell history and behavior, and thus the memory exhibited by thelmioed activity of
the vector of observables contributing to ClustBeAcomputing short- and long-term memory forfalir possible vector
combinations of the observables, these estimates digided by H(M) to estimate memory fidelitiesdanormalized
according to Definition (6) in Methods to estimatemory orthogonalities. Finally, wistep 4) calculated the mutual
information between all pairs of observables usigcluster vectors from (step 1) as inputs to dmtr Mutualinfo.m.

We took this fixed-interval, clustering-based approach becauseroflesire to focus on how different cell
histories can lead to qualitatively different stress resptehaviors, and because a much larger data set would
be required to use algorithms such as that suggested by Swinestymate mutual information at measurement
intervals short enough to avoid excessive ‘blurring’ of the tiees dynamics [74,75]. See Section S3 in
Supplemental Information for a detailed discussion of alternagipeoaches and why we chose the one we did,
and Section S2 for Matlab scripts and programs, including a nota lbootstrap method for calculating
confidence intervals that one could apply to data sets witiffizient number of replicates (not present in this
data set).
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Figure Captions

Figure 1. The B. subtilis stress response meta-network, where each ovatsems both a stress response and the
regulatory network of 100 or so interacting molecuspecies that regulates it. Among the many irmengenetic and
biochemical programs employed By subtilisto cope with environmentally adverse conditions i ability to take up
extracellular DNA, competence [40,76]; differergiahto an inert heat-, chemical, and UV-resistgurs [37]; secrete
degradative enzymes to identify and digest new feaarces [77]; become motile and chemotax towaskiply better
surroundings [78]; synthesize antibiotics to eliain competitors in the same ecosystem [79,80]n tur alternative
metabolic pathways, and form biofilms ([81], nobam), just to name a few [38]. The cross-represteelback between
sporulation and competence, and the many posigedtfack loops within each large ‘individual’ stressponse pathway
[10,36-40,82], are suggestive of switches and otdements that could potentially encode memory.e Two stress
response pathways monitored in our experimentsiugimn and synthesis of the degradative enzynisilsin, are
denoted by bold-faced ovals. The fluorescenviteps (GFP and DsRed) fused to the respective qens RBpollE and
PaprE are indicated (see Materials and Methods).

Figure 2. An ‘adaptive’ memory experiment.In an adaptive memory experiment, each (identisainple of a

biological system is subjected to one of severallit@mns prior to time t0, and then observed ibenmon condition after

t0. If different past histories lead to differesitort-term behaviors in current conditions, theesyscan be said to exhibit
short-term memory. If different past historiesdea different long-term behaviors, the system loarsaid to exhibit long-

term memory.

Figure 3: Information-based conceptual schema for measuriegony in microbes. In communication theory (tdpg
informational entropy of the signal spaceXijitaptures the number of different messagdisat can be communicated and
their probabilistic dispersal; the mutual infornoatil(X,Y) between transmitted and received signals quastifie amount
of information actually communicated. A memory exment, in contrast, involves subjecting cellglistinct treatments
M prior to time t0, followed by an identical treatmieS after time t0, with cell behavior from t0 on mamiéd through

temporal sampling of one or more observable vaggmll As applied to bacterial memory (bottom), the infational
entropy of the cell history space M) captures the number of different cell historiefopto time tO tested by the
experimental compendium and their probabilistipdrsal; the mutual informationgh{M;Ytans between the transient
response of the observable variaiflafter time t0 and the cell history prior to timedf@ptures the short-term memory of
cell history exhibited byyY over the cell history space in response to treatre Likewise, the mutual information
lasy(M,Y) between the long-term responseYoéind cell history prior to tO captures the longrtenemory of cell history
exhibited byy.

Figure 4: Different types of history-dependent behavior orighhobserve. a) Short-term deterministic memo®yate
trajectories ‘remember’ their initial condition f@ome time, and then converge to a common asyropbetiavior. b)
Long-term deterministic memory. State trajectomésmulti-stable systems ‘remember’ which basinatifaction their
initial condition started in indefinitely (the bastontaining X@ vs. the basin containing X@nd X@), but retain a memory
of the exact initial condition within a basin oftraction only transiently (XQvs. XQ;). c¢) Short-term and Long-term
memory in a system with unobservable states. Tdte space of the cell is two dimensional (X,Y), baoly one of the two
dimensions, X, is observed. Though all four ihiGanditions are distinct in the larger space,uhebserved Y component
renders them identical to the observer. Thusrdjedtories appear to diverge from a common stinint and approach
one of two asymptotic states. This gives the olesetive impression of first an increase in informatand memory and
then a decrease as the trajectories approacHdhgiterm values. d,e) If measurements are madengte cells rather than
on averaged populations (as we did in this pagastory-dependent distributions may be observed. Skort-term
stochastic memory. State trajectories are prolsdioilin individual cells, with a distribution ovehe population that
initially retains a ‘memory’ of the initial conditn of the population. In the long-term, this meymndegrades as the
distribution approaches a global attractor. e)d-tsrm stochastic memory. The distribution over plopulation retains a
‘memory’ of the initial condition indefinitely, aait least over the time-horizon of the experiment.

Figure 5: B. subtilismemory data compendium. These plots show the digsaaf the sporulation initiation reporter
PspollE-gfp expressiofa), the degradative enzyme synthesis repodpri2dsredexpression (b), and cell growth (c)Bf

subtilis KEE after the onset of starvation (resuspensidBNf) as a function of cell history prior to staieat as measured
by fluorescence (GFP, and DsRed) ands§afime series measurements taken every 15 minuteAfbiours, respectively.
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The 10 cell histories tested consisted of growthither rich LB medium or poorer GM medium to oridiwe densities D,
-1,-2,-3,-4, (see experimental overview section and Matedald Methods for details). Fluorescent intersitie(a-b)
were divided by OD600 (c) and then normalized [0 &] scale by dividing by the maximum. The errardshow standard
deviation over replicates at each time point.

Figure 6. The map from cell history tB. subtilisstress response clusters. The transient dynanit$ong-term levels
of the sporulation initiation @pollE-gfp expression), AprE synthesis gBrE-dsred expression), and growth (Qg)
signals were clustered using the automatic methddaterials and Methods. This figure shows thet Imeaps for each
signal in Figure 5 (dark red indicates maximum, dack blue minimum), the number of behavioral aasfer each signal,
and which subset of the ten cell histories in st tset corresponds to each cluster. For exartipde asymptotic
sporulation initiation signal fromdpollEgfp fusion clustered into two classes, one (top, Ijesponding to a history of
growth in rich LB medium to the three highest déesj D,—1, and-2, and the other class (bottom, 2) correspondira]ito
other cell histories.

Figure 7: Estimates of cell-history memory and mutual infotima in B. subtilis The upper left bar plot shows our
estimate of long-term (blue bars) and short-teinst(f1 hours, red bars) memory fidelity (% of theximum recoverable
information about cell history) exhibited in statiema medium SM by sporulation initiation §pollE-gfp expression),
degradative enzyme synthesisafifE-dsred expression), and growth dynamics (§4p and over all vector pairs of
observable read-outs and the vector triple, witipeet to the cell history space tested by our cowtipen. The lower right
bar plot shows our estimate of the number of bitsnatual information shared by all pairs of shantr (red bars) and
long-term (blue bars) observable signals in our pygrdata compendium. The surrounding flow diagcarcuit illustrates
the experimental and analytical scenario.

20



Table

n Cell Cell History Description
history
1 LB: D Grown in LB (rich medium) to density D (@ = 1)
2 [LB: -1 Grown in LB to density-1 (ODsocx 0.65)
3  [LB:—2 [Grown in LB to density-2 (ODsoc~ 0.4)
7 ILB: =3 |Grown in LB to density-3 (ODsox 0.2)
5  |LB:-4 [Grown in LB to density-4 (ODsox 0.1)
6 GM: D Grown in GM (less rich medium) to density D
7 GM: -1 |Grown in GM to density1
8 GM: -2 |Grown in GM to density2
9 GM: -3 |Grown in GM to density-3
10 GM: -4 |Grown in GM to density4

Table 1: Cell history table. The cell history spaceddnsists of 10 cell historiéd=(Medium1,Density}t growth in
either rich Luria Broth medium (LB) or a less rigtowth medium (GM]58] to one of five cell densities, B1, -2, -3,
-4,
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Figure 2

‘Adaptive’ memory experiment
r _______ A k_ -: - T 1
! £ 3 :
! AR .
: = !
0 : | ' :
= I
— (5| |
L E6 | I :
O E7 : :
Short t L f
E8 | Py iy :
E9 : :
I
E10 | I
' o Son S S SSE S DA BEE DEE EDE BEE EEE ESE . l
- t(:) History-dependent? -
Different treatments The same treatment
prior to t0 after tO

23



Signal l Signal

Signal sent X received Y
Epgce ;' Channel >

H(X) H(Y)
C=max{l(X,Y))

Information theory for communications

Cell history Noise Cell bel-1avior
prior to t0: M l aftert0: Y

Cell histo Common rTrarKsient\ . Asy)r\nptoic
space M | Stressor .
H(M) H(Yyans)  H(Yooym)

lirans )= I(M; Y(t=t0: t0+¢, )
Iasym(M; Y)E I(M; Y(t=t0+ tasym:w))

(MYt

rans.

Information theory for memory quantification

Figure 3

24



Figure 4

F 3 A A
X0, X0, (X0,Y0,)
(X0,Y0,)
T X0
3 (X0,Y0,)
X0, | X0, | (X0,Y0,)
*time ime >

¢) Short-term & Iong—termr

a) Short-term deterministic b) Long-term deterministic
(w/unobservable states)

X0, X0, X0, X0,
time time time time
d) Short-term stochastic e) Long-term stochastic

25



SpollE (normalized mean GFP RFU/cell)

Sporulation Initiation

—=—-1BD
———-LB1

LBz
- ——-L1B-3

A,D A_m
Time (hours after t0)

25

5

Figure

[=]
=]

[=]
%]

o

AprE (normalized mean Red RFU/cell}

=
oo

= =
=] —~

=
I

=

o

AprE Synthesis

-LBD

5 A_o A,m
Time (hours after t0)

20

25

22

ODEOO

26

= -

-

I

e -

-LBD
-LE-1

LB:-2

-LB-3

LB-4
GM:D
GM:-1

- GME-2

GM:-3

- G4

=

Cell Growth

T
ik

.
5

A,D A_m
Time (hours after t0)



LB:D
LB:-1
LB:-2
LB:-3
LB:-4
GM:D
GM:-1
GM:-2
GM:-3
GM:-4

SpollE

5

10

<.
Transient

Figure 6

20 time (hr)
*—>r
Asymptotic

AprE

5

1
1

0 20 time (hr)

< .
Transient

*—>

Asymptotic

27

O_Umoo

LB:D
LB:-1
LB:-2
LB:-3
LB:-4
GM:D
GM:-1
GM:-2
GM:-3
GM:-4

0 5 10, 20 time (hr)

g —»
C) Transient Asymptotic




Memory of Cell History
% 50 Key
2 40 I Short-term
> " I Long-term
9 X
é 20 YL >—Z=UX V)
. 10 Vv
0
ip‘r’é'E SpollE SpollE  AprE  SpollE APIE  ODgy,
. n
600
D[ ‘Ej X)IFE] XJ
" ° ¢ ¢ ¢ 4 Mutual Information
wl

-

Figure 7

1 L= — = -

Spoll
D=
T)SE 1]

1 ODO

sid

| |
|
| é_’-J‘I'Observer:: Measure [AR'E
| i —
|

ODgg I

600

SpollE

ST e

600

28



Supplementary Information S1

For “Memory in Microbes: Quantifying History-Depesmt Behavior in a Bacterium”, by Denise M.
Wolf, Lisa Fontaine-Bodin, llka Bischofs, Gavin €&j Jay Keasling, and Adam P Arkin. PLoS ONE
2008

Appendix S1. Memory quantification definitions

1. (Adaptive) memory experiment compendium: A set of experiments in which populations of one or
more cells are subjected to distinct treatmentprior to time t0, and an identical treatméht
following tO, with at least one observable read-otitbehaviorY sampled over a time series
following t0. The set of all data collected frohetmemory experiment compendium, viewed as a
measurement-transformed sampling of the map frash g&l history to future cellular responsse,
called thememory data compendium

2. Entropy of cel history space tested: Within the memory experiment compendium, celtdng M
is considered a random variable. IfM is the set of all experimentally tested -cell
treatments/historiesn prior to t0O thatM could be, andp(m) = PrM = m), then M has
H(M) = —z p(m)log,(p(m)) bits of informational entropy [1].

meM

3. Long term memory: Let tasymbe the time it takes for the observable respofiseapproach steady
state. Then within M, the cells under study exhifi(M;Y)= I(M;Y(t=t0OHasym0)) bits oflong
term memoryn the observable respongeo stress conditioB.

4. Short term memory: Let tyans < tasym Though short-term, transient behavior (and mgnaray
be measured over any interval or at any time po#tiveen tO anthsym(see the discussion in S1.2)
we use the interval [t6.ng in our memory calculations as follows: within thle cells under study
exhibit kandM;Y; trang = I(M;Y(t = t0:t0+ tyans)) bits of short termmemoryover (t0: tO+tyang) N
the observable respon¥do stress conditiof.

5. Memory fidelity: Theshort-term memory fidelitgxhibited over (tO: tO+ang) in response Y of the
cells to stressoB given M is RandM; Y; tyang= I(M;Y(t = t0:t0O+4yang)/H(M). Thelong-term
memory fidelityexhibited in response Y of the cells to stressgiven the cell history space M is
Pasyr{M;Y) = [(M;Y(t = tO+ tasym:o0))/H(M). This normalized mutual information metric, a measur
between 0 and 1 of the fraction of uncertainty aliba past conditions tested that is reduced by
knowledge of future cellular response, has alsa loa#ted the coefficient of constraint [2].

6. Memory orthogonality: The memory orthogonalitypetween two pathway responsésandY2 of
cells subjected to stress conditiBigiven cell histories M isMemy»(M;(Y1,Y2))= (I(M;(Y1,Y2))-
max(1(M;Y1),I(M;Y2)))/min(I(M;Y1),I(M;Y2)) Memy+, equals 1 if the two variables combined as a
vector yield the upper bound of memory under theseditions, and O if the two variables in
combination yield the lower bound (a consequence dhe inequality
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min(I(M;Y1),I(M;Y2)<I(M;(Y1,Y2)x I(M; Y1)+ I(M;Y2) [2]). This definition extends naturally to
output triples and higher order combinations, ak.we
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Supplementary Information S2

For “Memory in Microbes: Quantifying History-Depesmt Behavior in a Bacterium”, by Denise M.
Wolf, Lisa Fontaine-Bodin, llka Bischofs, Gavin €&j Jay Keasling, and Adam P Arkin. PLoS ONE
2008

S2. Fundamental limitations of memory experiments
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Figure S2. Any attempt to quantify or classify memory is fundamentally limited by the possibility of
unobservable states, uncontrolled and unobservable inputs, and measurement errors and distortions. This
figure shows a variety of initial conditions (start points, circles) in a toy cell state space, each corresponding to a
different cell history up to time t0. After tO, the system evolves over time to representative asymptotic behaviors
(end points, triangles), including a deterministic steady state (green triangle in box B), bistability (both triangles
in box B), and stochastic bistability (boxes C,B). Box A shows distinct initial conditions that are observable if
both X and Y are observed or only Y is observed, but not if only X is observed. Thus, the amount of history-
dependence in the system would be underestimated if only X were observed. Likewise, box B shows distinct
asymptotic states that are not observable if only X is measured. The three trajectories starting in box A also
demonstrate how memory of initial conditions can decrease over time, possibly even with no long term memory
at all. The trajectories passing through box D are resolvable only until measurement noise overwhelms the
signal. If measurements are averaged over the population, stochastic or multimodal features of the trajectory
(boxes C, B) become invisible, whereas if measurements are taken over the population in the form of
histograms (flow cytometry), a population consisting of cells that stochastically alternate between ‘off’ and ‘on’
states is indistinguishable from a population of cells that switch into one of the two states and then remain in that
state for the duration of the experiment..

Unobservable states: In a perfect world, one would take direct, natss| high-resolution

measurements of every state variable in the célli@renvironment, and exercise perfect controrove
input perturbations. Real world experiments sufifem limitations due to imperfect observation and
input control, lack of knowledge of the space ofamagful biological inputs, and finite time and
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resources. These limitations necessarily constrarability to detect, classify, and quantify magno
One major limitation derives from the presence nbhserved cell state variables A real-world
observer selects a small subset of state variablebserve and measure, thereby collapsing the high
dimensional state space of a cell or population sntow-dimensional projection. Collapsed dynamics
can lead to misclassifying and misquantifying meynor

Though physical first principles predict that chetry within cells should behave like Markov
processes, the presence of unobserved states é@naridarkov memory appear to be non-Markov.
If, for example, two initial conditions differ oniy the y axis but have the same value along theix
(Figure S2, box A), an observation of only the xapmnent of the two diverging trajectories would
suggest to a naive observer that the system bahalépends not only on the initial condition, blsba

on the path leading to that initial condition. Familar reasons, unobserved states can also tead t
underestimates of transient and asymptotic memorywo system trajectories responding to two
distinct cell histories may appear to be identit@m the perspective of the low-dimensional
observations, yet be perfectly distinct in the leigtlimensional native state space (Figure S2, boxes
A,B).

Uncontrolled, unobserved system inputs can alst teanisclassifying and misquantifying memory,
though the errors are different. If one weredpeat an experiment where a stimulus is applied an
the system response is measured, and there aretroilea, unobserved, randomly varying input
components that the observer is not aware of, armetistic system could be misclassified as
stochastic. If the uncontrolled, unobserved inputrelates with the controlled portion of the input
stimulus, one could overestimate the ability of thetem to ‘remember’ the specific observed
stimulus, though not the overall memory of the syst

Measurement distortions, information loss and errorBhe next layer of challenge in quantifying
cellular memory derives from imperfect and distaytmeasurement of cellular response. Distortions
and information loss arise from proxy measurememistrument error, experimental error, time
discretization/integration, and from indirect measnent modalities.  Fluorescent transcriptional
fusions that supposedly measure promoter activityoduce their own protein transcription,
translation, folding, and degradation dynamics, eawal cause toxicity and therefore perturb the syste
being measured. Errors from proxy measuremenisbioe with those from instrument error,
experimental error, and information loss from tidigcretization/integration to limit the resolutiand
dynamic range of the behavior we can observe. ifhigrn can lead to underestimates of the amount
of memory in a system (quantification errors). eTdell may have distinct trajectories and attractor
states associated with distinct cell histories, ibtlie trajectories and states cannot be resalleito

the ‘noise’ in these various types of measuremawot €Figure S2, box D), an underestimation of the
memory capacity of the system will result. Clasation errors can result too, for example a
stochastic response that appears deterministicubedae distribution lies within measurement noise
bounds.

Measurement modalities operating on bulk, avergggulilations are especially prone to classification
ambiguities.  With bulk measurements as one obtawth fluorimetry, for example, averaged
measurements over populations of cells conflateraenistic behavior (all cells express some GFP)
and stochastic bistability (some cells expresgh level of GFP and others express none) (Figire S
boxes B, C). This can lead to a memory classitica¢rror if one assumes the average measurement
reflects individual cell behavior. A memory quéination error (underestimate) can also resulthé
average response to distinct cell histories istmae but the single-cell response distributiorfedif
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Population distribution measurements as one obtdinsugh flow cytometry are less prone to
classification errors, as they can distinguish leetwdeterministic behavior and stochastic behavior,
but they still suffer ambiguities discriminatingtiveen stochastic bistability associated with rapid
transitioning between states bistability with &tif any transitioning between states on experialent
time scales. They also lose information due to limited dynamic range of the machine, finite
binning of fluorescence levels, different sizeds;alifferential cell growth and death rates amoalj
subpopulations in different states, and the ingbilo follow single cell fates. Even single-cell
measurements from time-lapse microscopy suffer fampling errors, image processing errors,
errors due to fluctuating illumination and drifadadifficulty identifying rare events. All of tke
errors distort trajectories and can lead to undienasions of memory.

Because these limitations are inherent in the esitim of memory processes and most likely result in
underestimates of the ability of the system to ®erber’ the cell histories tested by the experinlenta
compendium, we interpret quantifications of memaevithin our compendium as lower bound
estimates.
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For “Memory in Microbes: Quantifying History-Depesmt Behavior in a Bacterium”, by Denise M.
Wolf, Lisa Fontaine-Bodin, llka Bischofs, Gavin €&j Jay Keasling, and Adam P Arkin. PLoS ONE
2008

S3. Matlab codes for memory analysis

Generate Data Compendium

Cell history Cell Response
= -
S

'

(step 0) Select time
intervals

Transient ‘Asymptotic’

(Step 3) Estimate memory in higher dimensions

(step 1) Cluster data (step 1) Cluster data
(individual) Cell history (individual)
vector
Cluster Cluster data Cluster data < Cluster
_— e Y (vector) (vector) == B
Cell history Calculate Cluster Cluster Calculate Cell history
VETToT mutual information Vector Vector Il mutual information <+—vector |
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Long-term and short term memory fidelities
and memory orthogonalities for each combined
vector of observables

Figure S3. Schematic of a fixed-interval, information-based approach to quantifying memory in bacteria (A3 in
Fig. S4). As described in Materials and Methods, in our implementation of a fixed-interval approach to memory
guantification in bacteria we first (step 0) parse the time series data into a transient set and a long-term
‘asymptotic set’. Then, for the transient and asymptotic data sets, respectively, we: (step 1) use the Matlab
scripts in S3.2 to hierarchically cluster the trajectories and select an ‘optimal’ partition using the Silhouette
criterion, a clustering validation and optimization technique based on maximizing the compactness and
separation of the clusters in a partition [1]. This step produced six cluster vectors, one transient and one
‘asymptotic’ cluster vector for each of the three observables (i.e., ClustSPO_trans, ClustSPO_asym,
ClustAprE_trans, ClustAprE_asym, ClustOD_trans, ClustOD_asym); (step 2) calculate memory in bits as the
mutual information between cell history and cell behavior cluster for each observable on each time-scale using
the Matlab program in S3.1 with input vectors ClustA=M=[11 12 2 2 ...10 10 10] as the cell history vector and
ClustB equal to one of the six cluster vectors from step 1. To calculate memory fidelities, we normalized the
memory estimates by dividing by H(M)=3.32, the entropy of the cell history space; (step 3) calculate memory in
bits exhibited by pairs of observables and by the triple of observables by (a) using the script in S3.3 to combine
cluster vectors from multiple read-outs (e.g., Clustl=GFP cluster vector; Clust2=DsRed cluster vector;
Clust3=combined (GFP,DsRed) cluster vector) and (b) using as inputs to the program in S3.1, ClustA=(the cell
history vector M) and ClustB=(the combined cluster vector Clust3), calculate the mutual information between
cell history and cell behavior in the higher dimensional spaces. These estimates are normalized by H(M) to
estimate memory fidelities and by Equation (1) to estimate memory orthogonalities. Finally, we (step 4, not
shown) calculate the mutual information between the observables using the program in S3.1. Though we did
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not have enough replicates to meaningfully do so in this paper, with enough replicates one could estimate
confidence intervals for all memory and mutual information bit counts by performing a statistical (non-
parametric) bootstrap analysis. Such an analysis would involve random sampling with replacement from the
replicate sets, followed by clustering and mutual information calculations for each derived data set to generate a

distribution of memory estimates. From this distribution, confidence intervals could easily be determined.

S3.1) Matlab program to calculate memory and mutual information (Steps 2-4 in the

data analysis algorithm in Materials and Methods).

%%%%% %% %% %% %% %% % %% %% %% %% % % %% %% %% % %%
%Function: Entropy_Mutuallnfo.m
%

%Description: This MATLAB program accepts two input vectors, A and B,
%and calculates from them individual entropies H(A) and H(B), the
%entropy of the pair H(A,B), and the mutual informa tion between A and

%B: I(A;B) = H(A)+H(B)-H(A,B).
%

%lInputs:

%  ClustA='optimal' clustering vector for A (eac h entry an integer)
%  ClustB="optimal' clustering vector for B (eac h entry an integer)
%Outputs:

% HA=entropy of A in bits

% HB=entropy of B in bits

% HAB=entropy of the vector (A,B)in bits

% IAB=mutual information of A and B in bits
%

%Interpretation: IF (A=cell history) and (B=Respons e)

% THEN memory = IAB. IF (A=response 1) and (B=Response2)
% THEN mutual information = IAB and memory in combined
% response vector = HAB (assumi ng cell history

% space uniformly distributed).

%

%Author: Denise Wolf dmwolf@Ibl.gov
%%%0%%%0%% % %% % %% % %% % %% %% % %% % %% % %% % % %0 %
%%%0%%%0%% % %% % %% % %% % %% %% % %% % %% % %% %% %00

function [HA,HB,HAB,IAB]=Entropy_Mutuallinfo(ClustA,ClustB)

no_clustersA=max(ClustA);
no_clustersB=max(ClustB);

%H=-sum(log2(pi)pi) = informational entropy
HA=0;

for i=1:no_clustersA
size_clustiA(i)=length(find(ClustA==i));
piA(i)= size_clustiA(i)/length(ClustA);
HA=HA-log2(piA(i))*piA();

end
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HB=0;

for i=1:no_clustersB
size_clustiB(i)=length(find(ClustB==i));
piB(i)= size_clustiB(i)/length(ClustB);
HB=HB-log2(piB(i))*piB(i);

end

%%%I(X,Y)=H(X)+H(Y)-H(X,Y)= mutual information of X Y
%%H(X,Y)=sum_x(sum_y(pij*log2(pij))= entropy of vec tor (X,Y)
PAB=zeros(no_clustersA,no_clustersB); %PAB is the probability distribution of A,B
HAB=0;

for j=1:no_clustersB
for i=1:no_clustersA

PAB(i,j)=length(intersect(find((ClustA==i)),find((C lustB==)))))/length(ClustA);
if PAB(i,j)>0
HAB=HAB-PAB(i,j)*log2(PAB(i,)));
end
end
end

IAB=HA+HB-HAB,;

%%%%% %% %% %% %% %% % %% %% %% %% % %% %% %% %% %
%%%%% %% %% %% %% % %% %% %% %% %% % %% %% %% %% % %

S3.2) Matlab scripts for visualizing and clustering data (Step 1).

%Input: Data = m x n time series matrix, where m = the number of

% trajectories and n= the number of time po ints.

% History_Labels = m x 1 text vector with ¢ ell history labels.

%

% Directions: Run this script twice, first with the ward linkage and

% second with the average linkage, and select th e partition

% (Tx; x €[1,7]) that maximizes the mean silhouette. We run this script
% twice because the two linkage functions can p roduce

% different trees, and thus different partition s. The ‘best’ partition of
% the 14 calculated, according the silhouette c riterion

% (maximum mean silhouette over all clusters, fo r seven cutoffs each from %
the trees constructed using average and ward linkag es) is then selected

% as the ‘optimal’ clustering output of the pro cedure.

%%%%% %% %% %% %% % %% %% %% %% %% % %% %% %% %% % %

0%%%%% %% %%

%Calculate distance matrix
Data_dist=pdist(Data,'euclidean’);

%Calculate linkage function
Zfunction_ward=linkage(Data_dist,'ward’);
Zfunction_avg=linkage(Data_dist, ‘average");
Zfunction=Zfunction_ward; %or avg
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%Visualize clustering over all cell histories

figure;[H,T,perm] = dendrogram(Zfunction,0, ‘colorthreshold’ , 'default’ ,
‘orientation’ , 'left’ , 'labels’ ,History_Labels, ‘colorthreshold’ ,4.5);

figure %Calculate cluster vectors T for the first 7 levels of tree-cut
[H,T2,perm] = dendrogram(Zfunction, 2, ‘colorthreshold’ , 'default’ ,
'orientation’ , 'left’ , 'labels' ,History_Labels);

[H,T3,perm] = dendrogram(Zfunction,3, ‘colorthreshold’ , 'default’ ,
'orientation’ , 'left’ , 'labels' , History_Labels);

[H,T4,perm] = dendrogram(Zfunction,4, ‘colorthreshold’ , 'default’ ,
'orientation’ , 'left’ , 'labels’ , History_Labels);

[H,T5,perm] = dendrogram(Zfunction,5, ‘colorthreshold’ , 'default’ ,
'orientation’ , 'left’ , 'labels' , History_Labels);

[H,T6,perm] = dendrogram(Zfunction,6, ‘colorthreshold’ , 'default’ ,
'orientation’ , 'left’ , 'labels’ , History_Labels);

[H,T7,perm] = dendrogram(Zfunction,7, ‘colorthreshold’ , 'default’ ,
'orientation’ , 'left’ , 'labels' , History_Labels);

figure;

subplot(3,3,1) %3x3 plot, first figure= visualize 2-d projection

[Y,eigvals] = cmdscale(Dfunction);

plot(Y(:,1),Y(:,2), "', 'MarkerSize' ,15);
text(Y(:,1),Y(:,2),History_Labels,'FontSize',7);

xlabel( 'MDS scaled distance' )

ylabel( 'MDS scaled distance’ )

subplot(3,3,2) %Second figure = silhouettes for 2-level tree cut

[s2,h2]= silhouette(Data, T2, ‘euclid" )

subplot(3,3,3) %Third figure = silhouettes for 3-level tree cut

[s3,h3]=silhouette(Data, T3, ‘euclid’  );

subplot(3,3,4) %Fourth figure = silhouettes for 4-level tree cut

[s4,h4]=silhouette(Data, T4, ‘euclid’  );

subplot(3,3,5) %Fifth figure = silhouettes for 5-level tree cut

[s5,h5]=silhouette(Data, T5, ‘euclid" );

subplot(3,3,6) %Sixth figure = silhouettes for 6-level tree cut

[s6,h6]=silhouette(Data, T6, ‘euclid" );

subplot(3,3,7) %Seventh figure = silhouettes for 7-level tree cut
[s7,h7]=silhouette(Data,T7, ‘euclid’  );

subplot(3,3,8) %Eighth figure = mean silhouette for each partition
bar([2:1:7],[mean(s2) mean(s3) mean(s4) mean(s5) me an(s6) mean(s7)])

xlabel(  'Number of clusters in partition'

ylabel( 'Mean Silhouette' )

end

Caveat: Silhouette is a popular cluster validation/ selection measure that scores a
partition based on both the compactness of its clus ters and their separation [1].
People like it because it is systematic, and becaus e it takes into account local
and global properties of a partition. However, i ke all clustering
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validation/selection measures, Silhouette has its b iases. It is a conservative
criterion in that there is a tendency for the metho d to swamp out detail and
under-report the number of clusters if there are mu Itiple widely-spaced scales of
cluster separation.

For the data set analyzed in this paper, this is mo st evident in the clustering of

the transient data set for growth (OD 600)- BY eye it appears that there might be

some structure in the data set at early time points (OD g Of cells with a history

of growth in GM, but to different densities, figs. 4 and 5c¢) that gets subsumed
into two large clusters because of the large separa tion between the set faster
growing trajectories with a history of growth in GM and the much slower growing
set of trajectories with a history of growth in LB. Despite this conservatism, we
used Silhouette because of all the methods we consi dered, it seemed to do the best
job selecting tree cuts (mostly because the majorit y of our data is structured on

a single level of resolution). However, given the difficulty in selecting a good
clustering validation technique, we suggest that th e reader take the structure of
their data sets into account when selecting a clust ering criterion so as to get
the best ‘match’ between the bias of the method and the data to be analyzed.

S3.3) Matlab script for combinatorially combining cluster vectors (Step 2-3).

%9%%%% %% %% %% %% %% %% % % %% %% %% %% %% %% %% % 0%0%%%%%
%Input: Clustl - the cluster vector from one obs ervable (integers)

% Clust2 - the cluster vector from another observable (integers)

%

%Output: Clust3 — the cluster vector obtained by c ombinatorially combining

% the cluster vectors ClustA and ClustB.

%

%Example: Say Clustl =[11 22 2] and Clust2 = [ 111 22]. Then Clust3

% =[1 1 2 3 3] to show that there are thre e possible combinations:

%  (Clustl,Clust2)=(1,1); (Clustl,Clust2)=(2,1) and (Clust1,Clust2)=(2,2)

%%9%%% %% %% %% %% % %% %% %% %% %% % %% %% %% %% % %

0%%%%%% %%

D=[Clustl Clust2];

Clust3=clusterdata(D,0.1); %clusterdata.m is a function in the
Statistics

% Toolbox of
Matlab.

References
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For “Memory in Microbes: Quantifying History-Depesmt Behavior in a Bacterium”, by Denise M.
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S4. Alternative strategies in time-series interval sampling for memory
calculations:
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Figure S4. Three possible approaches to interval sampling for memory calculations: a) sliding window (A1), b)
sliding interval end-point (A2), and c) fixed interval (A3).

Memory calculations for adaptive memory experimenislve calculating the mutual information
between cell history before time t0 and cell bebasiter time t0. If cellular behavior is measuetc
single time point, say at 24 hours after t0, it ldobe clear how to proceed, at least in terms of
temporal sampling of the response: one would tatieuhe mutual information between the cellular
response measurements at that single time point thedcell histories corresponding to each
measurement. However, because in our experimehisvior after time t0 is measured as a time series
— every 15 minutes for 24 hours — a choice musibee about which time points or intervals to
analyze.

On one end of the spectrum is a sliding window aagn (which we will call Al). If the window size

is 1, admitting just a single time point, this apgrh amounts to calculating the mutual information
between cell history and cell response at each leahtpne point after t0. Or one could select a
window size greater than 1, and ‘slide’ the windaleng the time axis, producing a calculation for
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mutual information between cell history and resgofiem t'-tyingow to t', as t' ranges from tOgitgow

to the final measurement at t0+24 hours. The mglidivindow approach produces a (sampled)
continuous time-varying memory measurement fung¢tasnshown in Figure S4a above for a window
size of 5 sample points1.5 hours) applied to the sporulation initiatioméi series data. (Though

Swinney’s information analysis algorithm is in geadeappropriate for a sliding window approach, we
used the clustering and silhouette analysis apprdascribed in Supplementary Information Section
S3 for this example because a much larger datséhaatours would be required to use Swinney’s
analysis algorithm at measurement intervals shoough to avoid excessive ‘blurring’ of the time

series dynamics [1] [2]).

On the other end of the spectrum is a fixed-inteapgroach (approach A3). This approach involves
extracting transient and asymptotic segments of tdraporal cellular response. The mutual
information between the transient response andheglbry is then used to estimate transient memory,
whereas the mutual information between the asymeptesponse and cell history is used to estimate
asymptotic memory. This approach is discretehat it maps a time series onto just two numbers —
the transient and asymptotic bit counts, as shoviigure S4c for the sporulation initiation timeiss
data.

Between these two ends of the spectrum is thengliohiterval end-point approach (approach A2). In
this approach all analyzed measurement intervald at time tO, but the end point is variable, or
sliding, starting from t0 and ending at the finelé point, t0+24hr. Figure S4b shows the resuthisf
approach applied to the sporulation initiation tisegies data.

Each of the three approaches has its pros and cddwsth the sliding window (A1) and the sliding
interval end-point (A2) approaches are appealintha the measures are continuous, and as the final
time gets very large relative to time it takes tmwerge to asymptotic behavior, both measurements
converge to the asymptotic value. Another intémgsiaspect of these approaches is that they
communicate the temporal increase and decreasefaination and mutual information from the
perspective of the observer. The increase captanesng other (conflated) dynamics, the rate at lwhic
the history-dependent states of the cells beconsereable in the read-out, whereas the decrease
captures (also among other conflated dynamics)ddéway rate of memory as it relaxes from the
maximum amount of transient memory to the lesseg-®rm memory. This notion of memory decay
time could also be mapped onto a single measurelikerd half-life - the time after tO after whichet
amount of memory remains at less than half of tfferdnce between the maximum transient memory
and the long term memory. One potential down-siuwyever, especially for the sliding window
method, is the emphasis on the moment experiencn obutside observer of as increases and
decreases in information and memory due to ‘curessing’ resulting from unobservable states are
traced (see Figure S4a). This emphasis is a depdrom our goal of quantifying alternative patlywa
control conditioned by cell history. A naive inpegtation of memory curves derived from these
approaches could also be misleading. For instdooking at Figure S4a,b, one might conclude that
the cells mostly do not ‘remember’ their history foe first few hours, and then start to remember
their history when the curves diverge. Howevairgcsicell history prior to tO is most likely to imga
cell behavior after tO largely through an initiaindition of the cell as a whole at time t0, a mideely
interpretation is that though the cells encode mgnob their past experiences maximally at time tO,
the manifestation of this memory in the observalaes not become apparent for several hours.

Consequently, given our interest in capturing safisdl qualitative differences in transient andgon
term patterns of behavior of the pathways as cmmaitl on prior history, we chose the discrete,dixe
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interval approach (A3). Though this approach i¢ as visually interesting as the continuous
information and memory curves derived from Al a2l e believe it is more consistent with our
goals of calling out history-dependent behaviotgrat and is appealing in its relative simplicity.

One issue with the fixed-interval method we chaséthat one must choose time intervals to analyze.
This may be done ad hoc, according to the inteddtse analyst, or more systematically. One way to
approach interval selection systematically is tdgren a sliding interval end-point analysis, aswho

in (b) above for the sporulation time series, ttedwine the information dynamics of the curves as a
function of interval. If the goal is to pick a tisient interval that maximizes information & memory
the end point can be selected by choosing a tinmd jpb the maximum on the curve. For our data,
intervals that start at tO and end anywhere frono 89 hours after tO are roughly equivalent,
informationally speaking. We selected 11 hourgraf® to be the end point of the transient data
interval, but would have obtained the same redqdts we chosen nearly any point between 8 and 19
hours after t0.

References
1. Vastano JA, Swinney HL (1988) Information tramgpn spatiotemporal systems. Physical Review
Letters 60: 1773-1776.

2. Samoilov M, Arkin A, Ross J (2001) On the deductof chemical reaction pathways from
measurements of time series of concentrations. £hao108-114.
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S5. Complete set of memory and mutual information calculations

Mutual information across observable output pairs in bits

AprE SpollE | ODsoo AprE SpollIE | ODsoo
asym asym asym trans trans trans
g AprE 0.7219 0.4464 0.3219 0.7219 0.7219 0.2365
g asym
g SpollE 1.1568 0.8813 0.5568 0.6058 0.8813 0.3958
<
S, asym
o ODsoo 1.371 1.2955 0.971 0.6955 0.971 0.61
)
= | asym
-
= | AprE 1.4855 1.761 1.761 1.4835 1.4855 1
-
=
= trans
{f. SpollE 1.961 1.961 1.961 1.961 1.961 1
= t
E-.I rans
>3 ODsoo 1.4855 1.4855 1.361 1.4855 1.961 1
trans

Table S5: Estimated lower bounds on cell-history memory (redyer left triangle) and mutual
information (blue, upper right triangle) in infortranal entropy bits for each individu@. subtilis
stress response read-out and each vector paiadfaats, with respect to the cell histories tested
our compendium. Read-outs include both transiadt‘asymptotic’ sporulation initiation @pollE-
gfp expression), AprE synthesisaprE-dsredexpression), and growth (Q§) signals. For example,
the mutual information between transient sporutatiad AprE signals can be found in tHerdw and

5" column of the matrix (1.4855 bits) whereas the mgmencoded in the combined transient
sporulation and AprE signals can be found in thedv and 4 column of the matrix (1.961 bits).
Notice that the upper right 3x3 off-diagonal blockntains estimates of the mutual information
between all combinations of transient and long-tsignals, which provides an estimate for how much
transient memory carries over into the long terspomse. See Materials and Methods for details on
the calculations.
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S6. The distribution over the population of GFP and DsRedExpress expression
levels for selected cell histories and time points.

The histograms below derive from a flow cytomeamalysis of théB. subtilisreporter strain KEE at
selected time points and for selected cell hissorie
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Figure S6. Histograms from flow cytometry analysis of B. subtilis cells with a history of growth in rich LB
medium to a density of -2 (ODsq=1.016) prior to resuspension in starvation (SM) medium at time t0 at an initial
density of ODgyp=0.5. a) PspollE-gfp expression (GFP intensity) at 6 hours after t0; b) PspollE-gfp expression
(GFP intensity) at 24hrs after t0; c) normalized heatmap of PspollE-gfp expression histograms (GFP intensity)
sampled at selected time points from t0 to 24 hours after t0; d) PaprE-dsred expression (RFP intensity) at 6
hours after t0; e) PaprE-dsred expression (RFP intensity) at 24hrs after tO; f) normalized heatmap of PaprE-
dsred expression (RFP intensity) sampled at selected time points from t0 to 24 hours after t0. In the heatmaps
shown in (c,f), the distance along the y-axis is fluorescent intensity channel number (logarithmic scale), and the
color along the y-axis corresponds to the (relative) number of cells (red corresponds to the maximum, yellow to
an intermediate number of cells and dark blue to no cells).

Flow cytometry protocol:

Cells sampled at 10h and 20h after resuspensiS8Mimedium were washed twice in one volume of
0.2uM filtered PBS (phosphate-buffered saline, pH 71490x diluted in the same buffer and directly
measured on a Partec CyFlow space flow cytometatd® GmbH, Minster Germany) operating an
argon laser (488 nm). For each sample, at leaB08@ells were analyzed. Data containing the green
fluorescent signals were collected by a 520 nmiB& ind the red fluorescent signals were collécte
by a 590 nm BP filter. Data was captured using Blo2.4f software (May 23 2006) and further
analyzed using the commercial software package k@®Es littp://www.denovosoftware.com
Background fluorescence was analyzed with parasirainB. subtilis168 with each flow cytometric
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experiment to discriminate background from GFP asRed specific fluorescence. The heatmaps
were constructed using the Matlab© functions s@rfa¢ axis.m, and set.m.
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S7. Sporulation initiation delay as a function of cell history

The plot below shows sporulation initiation delayafunction of cell history as manifested in GFP
expression delay in ol. subtilisreporter strain KEE.

Sporulation Initiation Delay as a Function of Cell History
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Figure S7. Sporulation initiation delay as a function of cell history. Cells were subjected to one of 10 cell
histories prior to time t0 and then to a common stress condition, resuspension in SM, a sporulation ‘starvation’
medium, after t0 (see Table 1 for key to cell history labels). In theory at least, sporulation initiation delay is a
likely feature of the sporulation regulation strategy of B. subtilis to exhibit memory, because of its potential to
have a large impact on fitness. By calculating the mutual information between sporulation initiation delay times
and total transient sporulation dynamics, we find that 85.95% of the transient memory exhibited by the
sporulation initiation pathway is explained by cell-history modulation of sporulation initiation delay.
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S8. Bacillus strains and plasmids table

The experiments in this paper made use of thevimtig bacterial strains and plasmids:

Strains and plasmids Reference
Genotype

Bacillus

subtilis
168 trpC2 [1]
LF25 168,amyE:Pspone-gfp, cmp This study
KEE 168,amyE:Pspone-gfp, Papre-dsred cmp  This study
Plasmids
pPMF19 Rpoiic—9fp, spc [2]
pEA18 Ry-gfp, cmpspc [3]
pLF22 Rpolic—gfp, cmp spc This study
pLF25 Rpone-gfp, cmp spc This study
pSG-TTGACA Rpre-lacZ, cmp [4]
pDsRed-Express d2-DsRed-Expresamp Clontech
pLFKEE Rpoie-9fp, Papre-dsred cmp spc This study
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S9. PspollE-gfp fusion activity compared to the spollE gene expression profile

The data below shows that our GFP reporter foridaton initiation inB. subtilisfaithfully tracks
expression of the stage Il sporulation gepellE
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Figure S9. A. GFP activity in strain LF25 (amyE::PspollE-gfp cmp) and spollE transcriptional profile. Wild type
and LF25 strains were grown in parallel in GM medium to an ODgy of 0.6 and 0.7 respectively. Cells were
resuspended in SM medium to induce sporulation (as described in Materials and Methods) and two 200 pl
aliquots were transferred into a microplate for time course measurement in a Safire spectrofluorimeter (TECAN
inc.) with shaking, at 37°C. Fluorescence (481 nm absorption and 507 nm emission) and ODgn Were measured
every 15 minutes. A. LF25 strain time points are shown with squares, whereas wild type Bacillus subtilis strain
time points are shown with circles. Relative fluorescence (RFU) was normalized by the ODgg.

B. The transcriptional profile of the spollE gene was verified by total RNA dot-blot. Total RNA was extracted
from B. subtilis cultures after induction of sporulation as previously described for C. acetobutylicum, [1]. RNA
quality and quantity were checked by capillary electrophoresis using a 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, California). Total RNA samples (8ug each) taken just after resuspension (T0) and at 30 minutes
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intervals (T0.5, T1, T1.5, T2, T2.5) were spotted on positively charged Nylon membranes (Roche) using a dot
blot manifold (Perkin Elmer). Denaturation, fixation on membrane and hybridization were performed as
previously described for Northern blots [Fontaine, 2001 #15]. A radioactively labeled probe was PCR amplified
within the spollE gene using primers spollE-D (cgtcggtaccATGGAAAAAGCAGAAAGAAGAG) and spollE-R
(cctcggatccaccTGAAATTTCTTGTTTGTTTTGAA) on B. subtilis 168 genomic DNA as template. The resulting
689-bp fragment was radiolabeled as previously described [8].

The data shown in (B) confirmed spollE early and specific expression induction at the onset of sporulation,
starting clearly from T1. The GFP activity of the PspollE-gfp fusion (squares) in (A) showed a clear increase
starting from T1.5 after the resuspension event.
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